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Abstract
Background: Data mining (DM) is an approach used in extracting valuable information from environmental 
processes. This research depicts a DM approach used in extracting some information from influent and 
effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. 
Methods: Multiple regression (MR) and neural network (NN) models were examined using influent 
characteristics (pH, Biochemical oxygen demand [BOD5], temperature, chemical oxygen demand [COD], 
total suspended solids [TSS], total dissolved solid [TDS], electrical conductivity [EC] and turbidity) as 
the regression input vectors. Models were adjusted to input attributes, effluent BOD5 (BODout) and COD 
(CODout). The models performances were estimated by 10-fold external cross-validation. An internal 5-fold 
cross-validation was also used for the training data set in NN model. The models were compared using 
regression error characteristic (REC) plot and other statistical measures such as relative absolute error (RAE). 
Sensitivity analysis was also applied to extract useful knowledge from NN model. 
Results: NN models (with RAE = 78.71 ± 1.16 for BODout and 83.67 ± 1.35 for CODout) and MR models 
(with RAE = 84.40% ± 1.07 for BODout and 88.07 ± 0.80 for CODout) indicate different performances and 
the former was better (P < 0.05) for the prediction of both effluent BOD5 and COD parameters. For the 
prediction of CODout the NN model with hidden layer size (H) = 4 and decay factor = 0.75 ± 0.03 presented 
the best predictive results. For BODout the H and decay factor were found to be 4 and 0.73 ± 0.03, respectively. 
TDS was found as the most descriptive influent wastewater characteristics for the prediction of the WSP 
performance. The REC plots confirmed the NN model performance superiority for both BOD and COD 
effluent prediction.
Conclusion: Modeling the performance of WSP systems using NN models along with sensitivity analysis 
can offer better understanding on exploring the most significant parameters for the prediction of system 
performance. The findings of this study could build the foundation for prospective work on the characterization 
of WSP operations and optimization of their performances with a view to conducting statistical approaches. 
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Introduction
In recent decades, the application of computer modeling 
techniques has been introduced in many environmental 
issues (1). Given the significance of wastewater treatment 
and its role in reducing environmental pollution, the con-
trol and proper operation of a wastewater treatment sys-
tem is the most important environmental issue. The waste 
stabilization ponds (WSPs) are commonly recommended 
wastewater treatment systems used in arid and semi-arid 

developing countries. WSPs are valuable treatment sys-
tems due to suitable climatic conditions and availability of 
land (2). A stabilization pond is the most simple, reliable 
and cost-effective process with low maintenance require-
ments that can be used as an appropriate alternative for 
wastewater treatment by reducing biological oxygen de-
mand (BOD5) (3). Inappropriate operation of a waste wa-
ter treatment systems may result in severe environmental 
and public health problems, as its effluent to a receiving 
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water body can cause or spread various diseases to human 
beings (4). The performance of a WSP is often affected by 
various factors such as physical and biological factors (5). 
Moreover the performance efficiency of a WSP is great-
ly controlled by raw wastewater characteristics because 
of the variations in raw wastewater characteristics, its 
strengths and flow rates which is attributed to the chang-
ing and complex nature of the treatment process (6). In a 
WSP treatment system there are certain basic explanatory 
variables which can be used in explaining the plant per-
formance. Among these variables, chemical oxygen de-
mand (COD) and BOD5 are the two important. Thus, pre-
dicting the COD and BOD5 in the effluent, as the WSP’s 
performance indices, depending upon the influent raw 
wastewater quality will aid the operator to discover the 
foremost effective factors on treatment efficiency and take 
necessary safety measures before the occurrence of any 
challenge. Furthermore, given the required time needed 
to measure BOD5 (5 days) and COD (2 hours), and also 
their procedures which involve the use of several danger-
ous chemicals, the prediction of these parameters values 
instead of their measurement may be an environmentally 
and economically safe approach (7).
Attention has been diverted from manually treatment 
plant effluent to mathematically techniques due to these 
objectives (8). As a result, modeling of the effluent char-
acteristics of treatment system is imperative for the pre-
diction of plant performance and operation. Artificial 
neural network (ANN) technique is a non-parametric 
mathematical modeling technique which can be used 
for modeling such processes. It can be employed for bet-
ter prediction of the process performance owing to their 
high accuracy, adequacy and quite promising applications 
in engineering (9-11). The ANN models have been used 
with the prediction objectives in several fields including 
air quality (12-14), water treatment (15), wastewater treat-
ment (16), atmospheric sciences (17) among others.
 The emphasis of this study is the analysis of a WSP treat-
ment system data using data mining (DM) approaches. 
The data were collected from a WSP treatment system 
in Birjand, a city in the east of Iran. The purpose of this 
study is the prediction of the WSP performance in terms 
of COD and BOD5 as the main performance related pa-
rameters. Several analyses were performed by considering 
and comparing two DM techniques (i.e. multiple regres-
sion [MR] and neural network [NN]). 

Methods
WSP description 
The studied stabilization pond is located in Birjand, the 
capital city of Southern Khorasan province in east of Iran. 
It is located at a latitude of 32°86’ N and longitude of 
59°21’ E and about 1490 m above sea level. Birjand city has 
a cold and dry climate. The average annual temperature is 
16.35°C with the warmest time in June (average 27.5°C) 
and the coldest in February (average 3.2°C). The Birjand’s 
WSP has been constructed with a capacity of 10 500 cubic 
meter per day for a population of 64 000 people (18). The 

Figure 1. Schematic flow diagram for Birjand’s WSP. AP, 
anaerobic pond; PF, facultative pond; MP, maturation pond; WSP, 
waste stabilization pond (Adapted from reference 18).

WSP configuration is divided into anaerobic, facultative 
and maturation ponds (Figure 1). According to Figure 1, 
this treatment system has a pretreatment unit which in-
cludes grit chamber and screens that is followed by the 
WSP systems. The wastewater samples were taken from 
the influent raw wastewater and maturation ponds efflu-
ent within a period of one year. The analysis of the in-
fluent raw wastewater composite samples characteristics 
(including pH, temperature, BOD5, COD, total suspended 
solids [TSS], total dissolved solid [TDS], electrical con-
ductivity [EC] and turbidity) were carried out according 
to the standard procedures (19). Only two main distinct 
parameters namely COD and BOD were analyzed for the 
effluent treated wastewater. 

Data preparation
All performance parameters of Birjand’s WSP includ-
ing pH, COD, BOD5, TSS, TDS, EC and Turbidity were 
measured in Birjand wastewater treatment plant (water 
and wastewater laboratory). In this study, pH, EC and 
TDS were measured using portable devices. COD, BOD 
and TSS were determined according to standard methods 
(19). Data analyses were performed using statistical pack-
ages in R (20).
The descriptive statistics of the raw data of the influent 
and effluent wastewater characteristics are summarized in 
Table 1.
A dataset of the operation parameters of Birjand’s WSP 
was used where the objective was to estimate the effluent 
COD and BOD using influent wastewater characteristics 
(eight continuous attributes). The data comprised 96 raw 
instances, some of which are outlier values. Thus it is nec-
essary to preprocess the data before fitting the DM mod-
els. This process includes operations such as choosing the 
data (e.g. attributes or examples) or dealing with missing 
values and outliers. Outlier data is defined as data with 
considerably distance from the normal distribution. How-
ever, in some instances, these outlier values may be correct 
because they are as a result of the natural product of the 
distribution of variables (21). All examples with missing 
values were deleted. The box-and-whisker plot was ap-
plied in order to detect outliers. Samples beyond the whis-
kers of the plot were considered as outliers (Figure 2).
Figure 2 summarizes each raw variable by four compo-
nents as follows: a central line in each box is the sample 
median to specify the central tendency; a box (with edges 
of 25th and 75th percentiles) to indicate variability around 
the central tendency; whiskers around the box to show the 
range of the variable; and the observations beyond the 
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whisker length are marked as outliers displayed with a 
circle sign that fall within the distance defined by quartile 
±1.5× interquartile range (IQR). Where the IQR, or mid-
spread or middle fifty, is a measure of statistical disper-
sion, being equal to the difference between the upper and 
lower quartiles, IQR = Q₃ − Q₁. In current study, using a 
normal distribution, the date falls out of three standard 
deviations (SDs) of the mean was considered as outliers. 
Thus, the data that were more than µ±3SD, were regarded 
as outliers. Figure 3  summarizes the Box-and-Whisker 
plot for each processed variable. The descriptive statis-
tics of the pre-processed influent and effluent wastewater 
characteristics are summarized in Table 2.
The last step in the data preparation procedure was the 
data scaling. The objective here was to ensure that the 
statistical distribution of the values for each model input 
and output variable is approximately uniform. Therefore 
all attributes were standardized to a zero mean and one 
standard deviation (22).

Statistical modeling
The modeling and evaluation of the model which is an it-
erative process are the key procedures in DM approach 
(23). This research addresses these steps with an empha-
sis on the use of NN and MR functional models to solve 
the regression goals for the prediction of the performance 
of a WSP treatment system. All experiments reported in 
this study were conducted using R statistical environment 
(20). R tool is an open access with a set of software pack-
ages that allows the manipulation of data, performing of 
calculations, drawing of graphics and conducting statisti-
cal analysis. Taking the advantage of open access, Cortez 
(24) developed the Rminer package that aids the use of 
DM techniques in classification and regression tasks. In 
the present work, the Rminer package was utilized in per-
forming the statistical modeling. The regression dataset is 
made up of k∈(1,...,N) examples, each mapping an input 
vector ( k

n
k
1 x,...,x ) to a given target yk. The error is given by

 
k k pke y y= − , where pky represents the average of the pre-

Table 1. Raw data descriptive statistics

Parameter Unit Mean SD SE Max Min UB LB
pHin - 7.91 0.13 0.03 8.20 7.50 7.94 7.89

Tin °C 23.40 3.11 0.63 28.70 17.10 24.03 22.77

BODin mg/L 510.64 101.63 20.59 726.00 210.00 531.23 490.04

CODin mg/L 815.55 154.66 31.34 1167.00 516.00 846.89 784.22

TDSin mg/L 1299.16 158.45 32.11 1680.00 962.00 1331.26 1267.05

TSSin mg/L 238.73 210.52 42.66 2217.00 115.00 281.39 196.07

ECin µ mohs/cm 3100.94 312.53 63.33 3810.00 2400.00 3164.26 3037.61

NTUin NTU 211.22 113.00 22.90 1172.00 69.00 234.11 188.32

BODout mg/L 116.85 20.80 4.22 182.00 67.00 121.07 112.64

CODout mg/L 259.04 51.32 10.40 392.00 168.00 269.44 248.65

Figure 2. Box-and-Whisker Plots for the raw data of WSP 
characteristics

Figure 3. Box-and-Whisker Plots for the pre-processed data of 
WSP characteristics.
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dicted value for the k input pattern. 
Here, we selected eight wastewater treatment plant’s in-
fluent characteristics (pH, BODin, Tin, CODin, TSSin, 
TDSin, ECin and NTUin) as the regression dataset input 
vectors. Both models were assessed with a supervised 
learning, where each model was adjusted to a dataset with 
examples that map input attributes into a given target 
(BODout and CODout). 
The generalization performance of the models is often es-
timated by the holdout validation (i.e. train and test split). 
However, in some conditions the k-fold cross-validation 
is also used as the more robust approach (22). The latter 
approach is a more powerful method which requires k 
times more computation since k models are fitted in this 
approach. In this study, 10-fold cross-validation approach 
was used for the model’s generalization performance esti-
mation.  The  multilayer perceptron network was utilized 
for NN model. This network includes one hidden layer of 
H neurons with logistic functions. The overall model is 
given in the form:

)w)wwx(fw(fy n,i0,m
I

1n n,mn
HI

1Ij j0,iii ++= ∑∑ =

+

+=
   (1)

where yi is the output of the network for node i, wi,j is the 
weight of the connection from node j to i and fj is the acti-
vation function for node j. In regression method, the out-
put neuron is usually a linear function. The Rminer use the 
nnet package for modeling the NN. In nnet the optimiza-
tion is done through the BFGS (Broyden, Fletcher, Gold-
farb and Shanno )method of optim package. The BFGS is 
a quasi-Newton method, specifically published simultane-
ously in 1970 by Broyden, Fletcher, Goldfarb and Shanno 
(25). This uses function values and gradients to build up 
a structure of the surface to be optimized. For regression 
tasks, the algorithm minimizes the squared error (22). To 
solve this issue, the solution adopted is to train Nr differ-
ent networks and then select the NN with the lowest error 
(22). In Rminer, this option is set using model = ‘mlp.’ The 
performance of NN model depends significantly on the 
number of nodes in hidden layer. NN in simplest form has 
H = 0, while some more complex NN may use a high val-
ues for H (24). Optimizing the network structure is a cru-
cial step in the design of NNs. The NN structure must be 

optimized to minimize computer processing and obtain 
a good performance to avoid overfitting (10). There is no 
way to determine the best number of hidden units without 
training several networks and estimating the generaliza-
tion error of each (26). If the hidden units are few, then 
high training error and high generalization error due to 
under-fitting may result. Conversely, if many hidden units 
are used, low training error can be achieved at the expense 
of network generalization which degrades overfitting (27). 
Since the NN network was not too complex in this study, 
the number of hidden nodes (H) was estimated by using 
the formula, H=I/2, where I is the number of nodes in in-
put layer. However, the weight decay factor hyper-param-
eter was optimized with a 10-range grid-search between 
zero and one. To avoid overfitting for the training data set, 
an internal 5-fold cross-validation was used. In this study 
all input and output attributes were standardized with 
zero mean and standard deviation of unity using setting 
scale argument in fit function on all value. 
After selecting the best parameters, the model was re-
trained with all training data. To quantify the importance 
of input variables in the model, the sensitivity analysis 
was applied after the training phase in order to analyze 
the model responses when a given input is changed. The 
weight of each input variable was measured by varying its 
value through its full range while the other input variables 
remained with their mean values (28). If the analyzed in-
put variable is very important, its variance in the model 
output will be high. Therefore, the most important vari-
able in the model output is the input variable that has a 
higher variance (24). The overall performance of each 
model was computed by the global metrics, namely the 
mean absolute deviation (MAD), root mean squared error 
(RMSE) and relative absolute error (RAE), which can be 
computed as (29):

N
ŷy

MAD
N

1i ii∑ =
−

=

  

                                                                                                 (1)
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Table 2. Processed data descriptive statistics

Parameter Unit Mean SD SE Max Min UB LB
pHin - 7.92 0.12 0.03 8.20 7.60 7.95 7.90
Tin ◦C 23.36 3.11 0.65 28.70 17.10 24.00 22.71
BODin mg/L 506.12 99.73 20.65 726.00 210.00 526.77 485.47
CODin mg/L 807.25 147.92 30.63 1141.00 516.00 837.88 776.62
TDSin mg/L 1297.57 158.83 32.89 1680.00 962.00 1330.46 1264.67
TSSin mg/L 215.45 50.45 10.45 360.00 115.00 225.89 205.00
ECin µ mohs/cm 3100.98 315.17 65.27 3810.00 2400.00 3166.25 3035.71
NTUin NTU 200.04 54.84 11.36 327.00 69.00 211.40 188.69
BODout mg/L 115.51 18.88 3.91 176.00 67.00 119.42 111.60
CODout mg/L 257.27 50.09 10.37 392.00 168.00 267.64 246.90

Abbreviations: SD, standard deviation; SE, standard error; UB, upper bound of  95% confidence interval for the mean; LB, lower bound of  95% 
confidence interval for the mean.
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where N denoted the number of considered cases, yi the 
observed value, iŷ  the predicted value and iy  the average 
of observed value.
In all three metrics, lower values result in better predic-
tive models. Nevertheless, the RMSE showing the overall 
accuracy of the model is more sensitive to high errors. 
Another approach used in comparing regression models 
is the regression error characteristic (REC) curve (30), 
which plots the error tolerance given in terms of the 
absolute deviation, versus the percentage of predicted 
points. An independent variable is expected to presents 
low predictive error and high REC area. In this study, the 
comparison of NN and MR models was examined with a 
statistical test. The Welch’s two-sample t test that handles 
inequality in variance by adjusting degrees of freedom was 
used to compare RAE of the models.

Results 
Figure 4 shows the typical three-layered feed-forward 
ANN. Eight input nodes corresponding to eight indepen-
dent attributes, four hidden layer nodes and one output 
node are estimating BODout (Figure 4a) and CODout 
(Figure 4b) concentrations. Connections between nodes 
are presented by solid lines, which are associated with syn-
aptic weights adjusted during the training procedure. The 
bias nodes were also shown, with 1 as their output value. 
The NN model (H = 4, decay=0.75 ± 0.03) achieved the 
best predictive results for the prediction of effluent COD 
(CODout). Similar results was found for BODout in 
which an NN model (H = 4, decay = 0.73 ± 0.03) predicts 
this parameter with lower error in comparison with MR 
regression. Table 3 shows the MAE, RAE and RMSE for 
the NN and MR models. The RMSE is the root of mean 
squared difference between outputs and targets. 
The Welch’s two sample t test was also carried out in or-
der to compare the performance of NN and MR models 
for the prediction of BODout and CODout in terms of 
influent wastewater characteristics. The results are sum-

Figure 4. Structure of the constructed three-layer feed-forward 
ANN to predict BODout (a) and CODout (b) .

Table 3. Global metrics for the NN and MR models

Mertic
BODout CODout
NN MR NN MR

MAE 11.41±0.16 12.24±0.15 33.72±0.54 35.50±0.32
RAE 78.71±1.16 84.40±1.07 83.67±1.35 88.07±0.80
RMSE 16.37±0.21 16.81±0.22 44.75±0.74 45.55±0.36

Table 4. Welch’s two sample t test results for comparing NN and 
MR models
Parameter Model RAE t statistic df P value*

BODout
NN 78.71±1.16

-8.1337 17.89 0.0000
MR 84.40±1.07

CODout
NN 83.67±1.35

-6.3215 14.64 0.0000
MR 88.07±0.80

*Ho = no difference between means; H1 = true difference in means is 
not equal to 0; 95% CI.

 

Figure 5. The REC curves confirm the NN performance superiority 
for the prediction of CODout (a) BODout (b).  

Figure 6. The relative input importance of the NN model for 
CODout (a) and BODout (b)  in the order of importance shows the 
ECin and TDSin as the most relevant inputs. 

marized in Table 4. The REC curves of NN models for 
CODout and BODout were shown in Figures 5a and 5b, 
respectively.
The results of the sensitivity analysis (Figure 6a and 6b) 
procedure are useful for knowledge discovery for NN 
models. In this way, it is possible to quantify the contribu-
tion of a given attribute for the model.
The diagnostic plots of fitted NN models for BODout and 
CODout are shown in Figures 7 and 8, respectively. For 
indicating the models performance, the actual vs. predict-
ed values was visualized in Figure 7a and Figure 8a. It was 
observed that the targets were well tracked by the output. 
Figure 7b and Figure 8b show the residual histograms 
for the BODout and CODout NN models, respectively. 
The fitted normal distribution curve on the data set in-
dicated that the residual of the models followed a normal 
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distribution.
Figure 7c shows the residuals normal Q-Q plot of the BO-
Dout model. This plot helps to confirm the rationality be-
hind the conclusion that the residuals are fairly normally 
distributed. Figure 8c shows the residuals normal Q-Q 
plot of the CODout model. 
The relationship between standardized residuals and val-
ues predicted by the models were shown in Figure 7d and 
Figure 8d. 

Discussion
According to Figure 6a and 6b which present the relative 
input importance of the NN model for CODout and BO-
Dout, respectively, the EC and TDS which are the mea-
sures of dissolved materials in wastewater are seen as the 
most important inputs. Conversely, the influent TSS has 
a minimal impact on the predicted variations of BODout 
and CODout. In other words, less than 10% of the BODout 
or CODout originated from the suspended solids enter-
ing the WSP and most of the influent suspended materials 
have a biodegradable nature and probably were converted 
or deposited through the treatment process. Thus the most 
fractions of the suspended biodegradable materials enter-
ing the WSP may be removed by treatment process, while 
some part of biodegradable materials, which are mainly 
dissolved materials, were leaved the system without being 
remarkably treated. This may be as a result of low consid-
erable effect of the treatment process on the elimination 
of soluble materials entering the WSP. The lower metric 
values for NN models revealed the higher performance of 
NN models in comparison with MR models.

Welch’s two sample t test was found to be statistically 
significant, indicating that the NN and MR have differ-
ent performances and the former is better (P < 0.05) for 
the prediction of both BODout and CODout parameters. 
The obtained average RAE = 78.71 ± 1.16 for BODout 
and 83.67 ± 1.35 for CODout in the case of NN model are 
better when statistically compared with MR model re-
sults (RAE = 84.40% ± 1.07 for BODout and 88.07 ± 0.80 
for CODout). The REC curve plots in Figures 5a and 5b 
also confirm the NN model performance superiority. The 
whiskers in all graphs represent the 95% t student CI. Ac-
cording to the findings of this study, both the REC curves 
and global metrics, present the best performance to be the 
NN model followed by MR model. In fact, the NN model 
for both BODout and CODout responses have lower er-
rors and higher area under the REC curve. 
The degradability of WSP’s influent wastewater as the ra-
tio of BOD5 to COD is called Biodegradability Index (BI). 
Generally, the BI Index ranges between 0.4 to 0.8 for do-
mestic wastewater. If BOD5/COD is >0.6 then the waste is 
biodegradable fairly and can be effectively treatable using 
biological treatment methods If BOD5/COD is >0.6 then 
the waste is fairly biodegradable and can be excellently 
treated using biological treatment. If BOD5/COD ratio is 
between 0.3 and 0.6, then there is need to seed the waste-
water in order to treat it biologically. In cases where the 
BOD5/COD is <0.3, then the wastewater is not biologi-
cally treatable (13,31). From data in Table 2, the BI index 
was obtained to be 0.62 and 0.44 for influent and effluent 
of WSP, respectively. These values indicate that the influ-
ent wastewater can be classified as degradable and the ef-

Figure 7. Result of NN model to predict BODout with a 10-fold 
external and a 5-fold internal cross-validation approach. Scatter 
plot of estimated values vs. observed values (R2 = 0.56) (a). 
Histogram of residuals with normal adjustment curve (mean = 
0.003 ± 2.9) in the data set (b). Q-Q plot of the agreement between 
the residual quantiles and normal quantiles (c). Relationship 
between standardized residuals and values predicted by the 
model (d). 

Figure 8. Result of NN model to predict CODout with a 10-
fold external and a 5-fold internal cross-validation approach. 
Scatter plot of estimated values vs. observed values (R2 = 
0.54) (a). Histogram of residuals with normal adjustment curve 
(mean = 0.071 ± 7.15) in the data set (b). Q-Q plot of the 
agreement between the residual quantiles and normal quantiles 
(c). Relationship between standardized residuals and values 
predicted by the model (d). 
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fluent has no further biodegradability potential. This is 
consistent with Figure 6a where the BODin has a minimal 
impact on the predicted variations of CODout. In other 
words, most fractions of materials in the effluent are dis-
solved and non-biodegradable materials. 
The coefficient of determination (R2) between observed 
and predicted BODout and observed and predicted CO-
Dout were 0.56 and 0.54, respectively. Despite the slightly 
weak correlation values, the points are almost well aligned 
on the acceptable prediction diagonal of coordinates 1:1. 
These values which indicate that 56% and 54% of the vari-
ance of the BODout and CODout variables, respectively, 
can be explained by using the network input attributes. 
The remaining 44% and 46% of their variances can be at-
tributed to unknown, lurking variables, or inherent vari-
ability (11). The Histogram of the residuals can be used to 
determine if the variance is normally distributed. A sym-
metric bell-shaped histogram which is evenly distributed 
around zero shows that the normality assumption of the 
residuals is likely to be valid (32,33).
 According Figure 7b and Figure 8b the residuals are close 
to a normal distribution around a mean value of 0.003 ± 2.9 
(SD=14.00) and 0.071 ± 7.15 (SD = 34.54) for BODout 
and CODout NN models, respectively. A Q-Q (Quantile-
Quantile) plot is another graphic method for testing if the 
residuals of the models follow the normal distribution. 
The residuals are said to follow a normal distribution if 
all the scatter points are close to the reference line (34). 
The point pattern in the middle of Q-Q plot is fairly linear. 
Chambers (35) and Fowlkes (36) discuss the interpreta-
tions of commonly encountered departures from linearity. 
When the left end of pattern is below the line and right 
end of pattern is above the line, then there are long tails 
at both ends of the data distribution. No curvature was 
seen in the middle in Figure 7c thus showing that there is 
no skewness in the residuals distribution. It is noted that 
at the left and right ends of the plot, the circles are some-
what farther away from the line than elsewhere in the plot. 
But it is common for points at either end of the plot to be 
farther from the line than elsewhere, even when the data 
are normal (37). When the distribution of the residuals 
is skewed and their variance is found not to be constant, 
a transformation on the response variable may be quite 
advantageous (38). For CODout model (Figure 8c) the 
circles or points all lie quite close to the line and within 

the 95% CI zone; as such is safe to say that these residuals 
emanated from a normal distribution. Consequently, the 
normality assumption of residuals for both BODout and 
CODout models may be appreciated. In the standardized 
residuals rescale residual values by the regression standard 
error, if the residuals are found to be distributed normally, 
about 95% should fall within 2σ around the fitted curve. 
Consequently, 95% of the standardized residuals will also 
fall between -2 and +2 in the residual plot (33). Figure 7d 
and Figure 8d show a random scatter around zero with 
only a few points outside the ±2 limits. Therefore, the 
points are properly distributed on both sides of the hori-
zontal line of zero ordinate representing the standardized 
average of the residuals.
In recent years, modeling of wastewater treatment plant 
(WWTP) or constructed wetlands performances through 
NN for the prediction of wastewater characteristic param-
eters has gained enormous interest. The ANN application 
of these articles was summarized in Table 5. 
As can be seen in Table 5 the ANN models performance 
based on coefficient of determination for the prediction 
of effluent BOD5 varies between 31% and 84 %. For ef-
fluent COD the models performances varies between 39 
and 98%. The values of 0.56 for BOD5 and 0.54 for COD 
obtained in this study are within the range of performance 
predictions reported in literature.
According to Table 5, it can be established that DM ap-
proaches were most commonly used for the performance 
prediction of the conventional WWTP systems. Indeed, 
DM approach were rarely utilized for the performance 
prediction of natural treatment system such as WSPs and 
constructed wetlands (CWs) which have been proven to 
be effective substitutes for treating wastewater (45). How-
ever, results of this study could be the basis for better un-
derstanding of DM approach using ANN models for the 
prediction of WSPs performance. 

Conclusion
The real-world DM application case for the prediction 
of a WSP performance presented in this study indicates 
the possibility of analyzing data by using the R environ-
ment and rminer package. It was shown that the influent 
WSP indices could be applied to the prediction of effluent 
quality. Two DM techniques were explored: MR and NN. 
Overall, Welch’s two-sample t test on global metrics and 

Table 5. Summary ANN application of researcher’s studies in modeling of WWTPs and WTPs

Predicted parameters Location  R2 References
BOD5, COD, TSS WWTP, El-Agamy Reaching up to 0.9 (39)
COD, TSS Paper mill WWTP, China 0.98 for COD ; 0.96 for SS (40)
BOD5, COD, TSS WWTP, Doha 0.39-0.84 for COD; 0.31-0.84 for BOD5; 0.54-0.96 for TSS (10)
COD5, TSS, pH WWTP, Taiwan industrial park 0.92 for SS; 0.86 for COD; 0.90 for pH (41)
NH3, BOD5, TSS, COD, TN WWTP, Denmark More than 0.95 (42)
pH, TDS, turbidity, TN, TP Industrial WWTP, Iran 0.85-0.92 for pH; 0.23-0.53 for Turbidity; 0.07-0.45 for TP; 

0.22-0.51 for TN; 0.67-0.82 for TDS
(43)

BOD5 Industrial WWTP, Govindpura 0.64-0.87 for BOD5 (8)
BOD5 Constructed wetlands (CWs), Greece 0.52-0.68 for BOD5 (44)
BOD5, COD WSPs, Birjand, Iran 0.56 for BOD5; 0.54 for COD This study
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REC curve analysis confirmed NN model as the best pre-
dictive model for the prediction of both BOD and COD 
parameters. The sensitivity analysis of the WSP influent 
characteristics for the selected NN model can offer guid-
ance which will be very important for the prediction of 
WSP performance based on the effluent BOD and COD 
concentrations. EC and TDS were found to be the most 
descriptive influent wastewater characteristics for the pre-
diction of the WSP performance. 
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